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TIDES IN OCEANS BOUNDED BY MERIDIANS

IV. SERIES SOLUTIONS IN TERMS OF ANGULAR WIDTH OF
OCEAN: SEMIDIURNAL TIDES IN NARROW OCEANS

V. SOLUTIONS BY USE OF FINITE DIFFERENCES:
SEMIDIURNAL TIDES

By A. T. DOODSON, F.R.S.
(Received 24 April 1939)

PART IV. SERIES SOLUTIONS IN TERMS OF ANGULAR WIDTH OF OCEAN:
SEMIDIURNAL TIDES IN NARROW OCEANS

1. INTRODUCTION

The first three parts of this series of memoirs (Proudman 1936; Doodson 1936,
1938) have been concerned with the tides in an ocean bounded by a complete meridian,
and the main issue was that of the variation of the diurnal and semidiurnal tides with
the variation in depth of the ocean. The methods used in the first three parts are derived
from a general method due to Proudman, which will in due course be applied to
other oceans.

Other methods of attacking the problems have been exploited. One line of investiga-
tion is to consider a very narrow ocean and to attempt to develop the solution, stage by
stage, in terms of series of powers of the angular width of the ocean. The method has one
outstanding feature in that it does not require the solution of a number of simultaneous
equations, but it suffers from the disadvantage that it is only applicable to narrow
oceans. The solution is illustrated for the semidiurnal tide (K,) in an ocean 30° wide.

Special consideration is given to the elucidation of the motion in very narrow oceans
and to the results indicated by analytical methods for certain special depths.

2. NotATION
We shall denote by

6, y the co-latitude and east longitude, respectively, of any point;
4 the value of cos0;
n the value of 2—sin?4;
¢ half the width of the ocean in angle of longitude, the bounding meridians
being y = +a; |
¥ the value of y/a;
& the depth of the ocean, supposed to be constant;
a the radius of the earth;
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478 A. T. DOODSON ON

¢t the time;
g the acceleration of gravity;
u, v components of current in the directions respectively of increasing 0, x;
{ the elevation of the free surface of the ocean above the undisturbed level;
{ the “equilibrium form” of { corresponding to the disturbing forces;
¢’ the value of {—{;
H the maximum value of { over the whole earth for the semidiurnal tide;
R the amplitude of tide at any place;
o the speed of the harmonic constituent to be considered, where o = 27/period;
y the lag of the phase of tide behind the phase of the equilibrium tide on the
central meridian;
o the angular rotation of the earth;
£ the value of ¢%a?/gh.

Further, we shall write { = {; cos ot+{, sin ¢¢, with a corresponding notation for
u, v, §, {’, where {;, {, and analogous functions do not involve the time.

We shall also take ¢ = 20, so that the harmonic constituent investigated is K.

The value of { appropriate to a semidiurnal tidal constituent is given by

{ = Hsin?0 cos (ot +2y), (2-1)
whence {, = Hsin%0 cos 2y, {, = — Hsin?0 sin 2y. (2-2)
3. FUNDAMENTAL EQUATIONS
The fundamental differential equations are
du __got
%—Qwvcosﬁﬁ TR (3-1)
dv B g o )
5, 20ucos 0 = “asind oy’ (3-2)
¢ 1 (d J
% Tl sinf) + 5 ()| = o, (33)
. aga . . €2 (7§1
and from these we derive Eul sin3 0 = sin 05 ap T co s 0~ o’ (3-41)
g—luz sin®f) = —sind érl~{—cos 6%?2, (3-42)
a0 ; ,
g v, sin® 6 b smﬁcosb’ab,, (3-51)
_oa, s 98 g 9% .
g1)23m 0 = 0X+SIH0C05080' (3-52)
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TIDES IN OCEANS BOUNDED BY MERIDIANS 479

On eliminating the components of current from (3-3) we obtain

v 0 §1+,7%i2 —BH sin® 4 cos 2y, (3-61)
V2§2+a G ;7%% = fH sin® @ sin 2y, (3-62)

where V2 denotes a differential operator such that, if applied to any function Z, it yields

ad(1 d
ViZ = {Smwaﬁ(smé’ﬁﬁ) +fsint 0} (3-71)
= Z"sin%0 —Z'sin 0 cos 0+ fZsin* b (3-72)

if dashes denote differentiation with respect to 6. The operator can also be written as

2z
V2Z — (1—p2)? (a 2+/)’Z) (3-73)

4. ANGULAR WIDTH OF OCEAN AS PARAMETER
Write G = Zy+-a2Zy+- 0¥ Zy ..., (411)
b =aZ,+a3Zs+..., (4-12)

where Z , the coefficient of «’, is a function of § and ¥ (= y/a.)

Suppose that it is possible to satisfy independently for each power of « the differential
equations (3-61) and (3-62) and the boundary conditions v, = v, = 0. This requires {,
and {, to be expanded in the form

{, = Hsin?fcos 2y = Hsin?0 Y, C’r—rl—' yrar  (r even), (4-21)

G~ — Hsin?fsin2y — —Hsin0 S S, (r odd), (4-22)

where Co=1, Co=—22 C,=24.., (4-31)
S =2, S=—93 8 =25... (4-32)

Then, on equating powers of a, we have

aZr'rZ aZ 2 — in6 9 r .
9 G V2, = —Hpsin® Oy (r even), (4-41)
021y 921 oz FgGins 5y :
agr Mgy TV A= Hpsintlyyr (r odd), (+42)
59-2
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with the boundary conditions (3-51) and (3-52) yielding on y? = 1

l:a?;f*l~sinﬁcosﬁa£’] =0 (reven), (4-51)
aZH-l 3 aZr — .
W sinf cos "37] =0 (r odd). (4-52)

The square brackets are used to indicate boundary conditions with ¢ = 4 1. It is
clear that when Z, Z_ | are known then Z,_ , can be determined by ordinary processes
of differentiation and integration in ¢ and .

We shall omit the comma between 7, s in the suffixes in the numerical cases, unless 7
or s is equal to or greater than 10.

It is known that {; must be a symmetrical function of ¥ and that {j must be asym-
metrical in ¢, and therefore we clearly have

0*°Z, 02z, 02,1 )
=% =0 [W] =0, (4-61)

whence we obtain, if Z,, Z,,, are functions only of 0,
Zy = Zy, (4-62)
Z, =2y, (4-63)

and it also follows that Z, is of the form ZZO+—21—!Z22 ?, and in general Z, is a polynomial

of order 7 in ¢, with coeflicients which are functions only of 4.

5. THE RECURRENCE EQUATIONS
We can thus write

. 1 1 1
(= Zoo+“2(zzo+g3ﬁzzz) +0‘4(Z40‘|"2—!¢ZZ42 'l‘;ﬂ V2 Zyy) + oy (5:11)

G = Al Zu) + W Zar 5 Zas) o (512)

where Z,  is a function only of 6.

On substituting in (3-61) and (3-62), or on developing (4-41) and (4-42) and equating
coeflicients of « and also of ¥, we obtain the general recurrence equations

Z1+2,s+2+”Zr+l,s+1+V2Zr,s =0 (7' # S): (7’, s CVCH), (521

= —HpC,sin®0 (r=s), (r, s even), (522

Zyio,sv2 = Npi1, 51TV, =0 (15 5), (1, s odd), (5-31

)
)
)
= HpS,sin0  (r=s), (r, s odd). (5-32)
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TIDES IN OCEANS BOUNDED BY MERIDIANS 481

It is evident that when Z;, and Z,, are determined, then straightforward processes of
differentiation will yield Z,,, Z,s, ..., and similarly the sequence of values Z,,, Zs,, Z,5,
Z,,, ... all follow from a knowledge of the first two functions of the series, and so on for
the sequences beginning with Z_jand Z,,, .

6. THE BOUNDARY EQUATIONS

On substituting the expressions for {] and {; in the right-hand side of (3-51) and
(3-52), equating to zero, writing ¥ = 1, and collecting coefficients of «, we obtain

Zoy1= smﬁcosﬁalzzr o—P. (reven), (6-11)
Zyyg o= smﬂcosﬂaaﬁz+1 1—Q, (rodd), (6-12)
where P = 2( i, s+l) smﬁcosﬁ(;?ﬂ ﬁ: (1 Z,s), (6-21)
§=2
r+1/1 a r+1 /1
Q=3 (51Z0sn, ) Hsinfeost3 3 (1 Zn,s). (622

We have seen that the sequences of functions
Zoos Zyys Zogs Lsss -
ZZO: Z31, Z42, Z533 Rt

depend only on the first two functions of each sequence, and it is easily verified that the
functions appearing in P, and @, belong to the sequences associated with Z,_, ,,
Z, 4 05---» Loy, whereas the other functions Z, o, Z,,1 1, Z,,,,,in (6:11) and (6-12) belong
to the sequence associated with Z, . If we suppose that the functions of the lower orders
of sequence are first derived then it is evident that P, and ¢, can be considered *“known”’.

7. THE DIFFERENTIAL EQUATION FOR Z,

It is clear from the preceding paragraph that there are three equations connecting
the functions Z, o, Z,,, 1, Z,,,, 4, namely (6-11), (6:12) and (6-22), with s = 0 in the
latter equation, and these suffice to determine these three initial functions of the
sequence associated with Z, .

As an example, take r = 0, whence the equations become

Zoo+nZy+V2Zyy = — Hfsin® 0, (7-11)
Z, = sinﬁcosﬁa(zgzoo, (7-12)
Zyy = smﬁcosﬁaaﬁz (7-13)
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482 A. T. DOODSON ON
On eliminating Z,, and Z,; we obtain
sin3 §(Zg sin 0+ Zj cos 0+ fZy,sinf) = — Hfsin®0, (7-14)

where dashes denote differentiation with respect to ¢. This equation yields a finite

solution
Zo — L (4 psin20) (7-15)
0= 57 .
From this value of Z, the values of Z|, and Z,, are obtainable quite simply from (7-12)
and (7-13) and a cross check on Z,, is again obtained from (7-11).
Similar processes yield the general equation

Z ysinf+Z jcost+fZ, ;sinf = | —sinfcos 03%P?,+77PT+ Q,! cosec? f

= R, cosec? 0. (7-2)

If we express all functions in powers of sin § it is readily verified that the right-hand
side of this equation is a finite series in odd powers of sin §. If we write the coeflicient of
sin™ @ as 4,,, and assume

r

Z, o= By+B,sin?f+-..., (7-31)

we get the recurrence equation

B — (m+2)°B,, 5 — A
m mim+1)—pF

(7-32)

Since we have shown that after a certain value of m the coeflicients A4 are zero, then we
can write the higher values of B also zero, and so obtain the last coefficient B,, in terms
of the last coefficient 4,,, and thence work backwards until B, is uniquely determined, so
long as m(m-+1) —f is never zero. We shall deal with the case m(m+1) = f below.

8. THE TIDES IN A VERY NARROW OCEAN

We have now shown that {; and {; can be expressed as in (5-11) and (5-12), that the
coeflicients of any power of « are finite series in powers of ¢, and that each of the coefli-
cients in these latter series is a finite series in powers of sin §. It is evident that the com-
plete series would be of no value if they were not convergent for very small values of
a, but there is no reason for supposing that such lack of convergence needs to be con-
sidered, so that we shall assume that when « is very small we can write

G =2y &=0, cos2x=1,
and from (7-15) we obtain

=Tt = Hsin20+ﬂ—l_{——6 (4 psin?0) :/-g—é (4— 65in?0), (81)
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TIDES IN OCEANS BOUNDED BY MERIDIANS 483

which gives an amphidromic point when
sin?f = 0-6667, 0 = 54°7. (8-2)

If # becomes zero this gives the ““corrected equilibrium tide’ for a very narrow ocean.

It is remarkable that this solution for a very narrow ocean appears to give amphi-
dromic systems around points which are independent of . If, however, f = m(m-1),
where m is an integer, then (8-1) is only a Particular Integral, to which must be added a
multiple of the Legendre Function P, (cos#), the solution of

o0Sinf+Zg,cos 0+ fZ,,sin 0 = 0.

The questions arising from this are of a very important and general nature, and some
consideration has been given to them in §§13 and 14. We may say at once, however,
that we formed the conclusion that this series method is not suitable for the computa-
tion of these critical cases.

9. CONSIDERATIONS AFFECTING CHOICE OF FUNCTIONS OF LATITUDE

It has been tacitly assumed that powers of sin f are convenient for the representation
of the functions and we proceed to discuss the reasons for choosing harmonic functions
in the form cos nf rather than powers of sin 6.

Since V2Zsin® 0 = n(n—2) sin2 0 —n(n—1) sin®*2 f+ fsin"+4 4, (9-1)

it is evident that the successive processes of differentiation involved in determining the
functions in any sequence will quickly lead to very large numerical coefficients through
the factors n(n—2), n(n—1). If, however, we choose the variable cos 7nf we have

V2cosnl = ¢ cos (n—4) 0+ t(n*+n—pf) cos (n—2) -+ (—4n®+3f) cos nd
+3(n?—n—p) cos (n+2) 0++5f cos (n+4) 0, (9-21)
with  V2cos 20 = 1(6 —f) ++5(— 32+ 76) cos 20+ 1(2—f) cos 40+ f cos 60, (9-22)
V2(1) =2f—%fcos 20+Lp cos 40. (9-23)
Though more terms are involved in the processes, the numerical coeflicients are much
smaller than in the case where sin" @ is the variable. (The same result holds for many of
the functions which are prominent in tidal theory, particularly the Legendre Functions,
which involve very high coeflicients if expressed in powers of cos §, and very much smaller

coefficients if expressed harmonically.) For these reasons we have chosen the harmonic
representation, and consequently we write

; 7 =2—sin?f = }(3+cos 20), (9-3)
sinﬂcosﬂa—gcosm? = —4ncos (n—2) 0+ 4ncos (n+2) 0, (9-4)
ncosnf = L cos (n—2) 043 cosnf+ % cos (n+2) 0, (9-5)

sinf § = 13— 15 cos 20+ & cos 40 — 3 cos 66. (9-6)
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10. THE DIFFERENTIAL EQUATION FOR Z,_  IN TERMS OF COS nf

Special consideration needs to be given to the solution of the differential equation
(7-2). The right-hand side of this equation is

R /sin3 0,

and R, will be represented by a finite series of harmonics. The processes of dividing such
series by sind have been considered in Part IT (Doodson 1936, p. 298), and the con-
tinued application leads to the following results.

We can write

R,[sin30 = (py+pycos 20--... 4 p,, cosmf) [sin® §
= —2{psinf+...4p,,_,sin (m—1) 0}/sin? ¢ ] (10:1)
= —4{p)-+pycos 20+ ...+ p;, _,cos (m—2) G}/sin §
= 8{pysinf+...+p;,_5sin (m—3) 6}, )
provided that R, is truly divisible by sin®f, which requires
%pn =0, (neven) (10-21)
0
7Zn(n——2)2pn =0 (neven). (10-22)
2
The values of p, follow very simply from the general formula
p?" :pr+3+3pr+5+6pr+7+'“3 (1031)
where the coefficients are 1, 3, 6, 10, 15, 21, 28, 36,..., (10-32)

the third differences being zero. Thus we get, as examples

p;n—B = zbmi
[)1/11—5 :pm~2+3pm3
pr,n-7 = Pm—at3Pm_o+6p,,.

The conditions (10-21) and (10-22) were tested and very small amendments made in
the coefficients p so as to satisfy these relations. The sequence of numbers in (10-32) was
written in a vertical column and placed alongside the values of p to facilitate the cross-
multiplication.

The next procedure is to write

Z, o= ay+ascos20+...,
whence substitution in the differential equation yields

4. — _161b;+l+Fnan+2
n G ’

n

(10-41)
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where F, = (n+1) (n+2) -4, (10-42)
G,=n(n+1)—f, Gy,= —2p. (10-43)

The values of a, are obtained by working backwards as explained in § 7.

11. ILLUSTRATION FOR f = 10

The numerical processes involved are very much simpler than would appear at first

A A

<
= sight, provided that the functions and appropriate multipliers are tabulated in a
;5 S proper manner.
= The coefficients arising from the operation VZcosnf are obtained from (9-21),
2 g P ;
— (9-22) and (9-23) as follows:
= O Coefficients of
E 9) n cgs (n—4)0 cos(n—2)0 cos nd cos (n+2)0 cos (n+4)?9
0 — — 375 —b 1-25
3% 2 — -1 2-375 -2 0-625
=0 4 0-625 2-5 —4-25 0-5 0-625
== 6 0-625 8 —14-25 5 0-625
085 8 0625 155 —28:25 115 0-625
8% 10 0-625 25 —46-25 20-0 0-625
—
=< . . . . .
- The table can readily be extended as far as is required, since the third differences are
Zero. ‘
If Z, , is expressed as Xa,cosnf and Z,,,  ,, as 2b,cosnd then it is clear that the
coefficient of cos 60, for example, in Z,,, ,, from (5-21), is
14-25 ag —1-50b,
—155 a5 —0-25b,
o . . ol
< It is a simple matter to lay out a compact table of such groups of multipliers, and to
b p y p . . .
2 compute the required coefficients by laying the folded table of multipliers against the
— coeflicients of the harmonic terms in the functions. A similar table but with reversed
2 E signs in the second column will be usable for equation (5-31). The same tables are used
- 5 for (5-22) and (5-32) using (4-31), (4-32) and (9-6).
0O The initial functions Z,, Z,,, Z,,, were obtained very readily from (7-15), (7-12) and
=W (7-13), yielding
2‘(2 ’ -Coefficients of H cos nf
%9 n Zy Zy Zsy
[ 0 —-0-25 —0-625 0-000
026 2 1-25 0-000 0-625
g4 4 — 0-625 0-000
=.§ 6 — —_ —0-625
=
o=

Vor. 238. A, 60
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From Z,, Z,, all the required functions with r = s readily follow by the processes
explained above. '
The next sequence with s = r—2 was computed as follows:

‘RZ Rz/sin" o Zzo
n P2 QZ Pn ])',/L+1 Fn Gn an
0 4-335937 1-738282 3:320312 0-839848 -8 =20 —0-561193
2 —6-562500 —2:220053 —6-184897 —0-800780 2 —4 —3-082678
4 2-968750 0-494792 4-947917 0-423177 20 10 —0-240885
6 —0-937500 —0-185547 —3-378905 —0-436198 46 32 0-218099
8 0-195313 0-266926 1731771
10 — —0-094400 —0-436198

The values of the coeflicients of the harmonic terms in P and @ are very easily com-
puted from (6-21) and (6-22) using (9-4), and R is the sum. The conditions indicated in
(10-21) and (10-22) are both satisfied, and then the computation of p’ follows by use of
the multipliers in (10-32). Finally the values of a, in the series Z,, follow from (10-41)
with the values of /' and G indicated in (10-42) and (10-43). From the value of Z,, the
values of Z;, and Z,, follow from (6:11) and (6-12), again using (9-4), and the whole of
the operations can be checked by computing Z,, from Z,, and Z,, according to the
formula (5-21), after which the sequence can be continued by the use of the recurrence
formulae (5-21) and (5-22).

Similarly, Z,, Zsy, Zgy, Z,4 o have been computed, and the resulting sequences
tabulated as far as r = 12.

A valuable check to the operations involved in the recurrence formulae was obtained
by computing the coeflicient of sin? ¢ in each function, for it can be readily shown that
these coefficients for any sequence

Z Z, 4 4. Z

r, 00 r, 69

Zygs Zeroeees

are proportional to 1, +2, —22 23 924 25, ...

This afforded a very ready and sensitive check, because the coeflicient of sin? f is equal to
—Xin%a,, - (11-1)

where Z = Xa, cos nd.

In all the calculations a very high order of accuracy, to six or more significant figures,

was maintained, but the resulting functions have been tabulated in table 1 in abbre-
viated form, and the factor 1/s! has been incorporated as indicated in (5:11) and (5:12).

12. GENERAL REMARKS ON THE SOLUTION

In table 2 are given values of the functions Z, as defined in (4-11), obtained by speci-
fying ¥ = 0, 0-333, 1-000 in the definitions of (5-11) and (5:12), and computed for
specific values of # with § = 10. The values of {; and {; are readily obtained on multi-
plying by the appropriate powers of « for any given value of «. It is evident that the rate
of convergence is very slow so that the solution can only be exploited for small values of a.
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TABLE 2. VALUES OF FUNCTIONS Z, FOR SPECIFIED VALUES OF
£ = 10, coefficients of H

SOCIETY

Y 7 r=0 r=2 r=4 r=26 r =38 r =10

— 0° 1-000 —3-667 —-11-27 0-64 —109-3 590

0 20 0-708 —-3:074 —17-02 5-07 —90-5 378

40 —0-033 —0-979 —0-88 -12-06 14-6 556
4 60 —~0-875 1-319 —0-59 —2-60 51-8 —1082
! 80 —1-425 2-042 2-22 3-00 —30-1 389
4 90 —1-500 2-063 315 0-17 —49 170
0-333 20 0-708 —-3-030 —-17-14 4-61 —88:8 385
40 —0-033 —0-956 —0-87 —-10-19 9-8 502
60 —-0-875 1-267 —0-01 —2-80 54-9 —1015
80 —1-425 2-027 2-18 4-07 —26-5 378
90 —-1-500 2-063 2-89 2:32 —-99 232
1-000 20 0-708 —2-68 —8:05 0-98 777 423
40 —0-033 —0-77 —0-62 2-11 —-17-0 132
60 —0-875 0-85 4-28 —1-86 61-1 —481
80 —1-425 1-90 2-59 6-94 1-2 222
90 —1-500 2-06 1-90 10-18 —26-7 443
5 (7 0 r=1 r=3 r=2>5 r=17 r=9 r=11
0-333 20° —0-172 0-375 2-35 0-1 -5 —88
40 —0-404 0-894 0-33 -—-14-7 202 —1917
60 -0-313 —0-989 —6-06 247 —-367 6315
80 —0-049 —4-239 —278 —28-4 167 —4324
90 0-000 —4-815 —-1-73 —42-7 245 — 268
1-000 20 —0-516 1-272 6-57 0-8 9 —273
40 —1-212 2-659 4-19 -30-8 435 —3902
60 —0-938 —1-526 —11-54 50-3 —714 12364
80 —0-146 —8712 —5-51 -54-4 317 — 8479
90 0-000 —10-000 —2-92 - 859 496 —584
It had been hoped that some indication might have been yielded by the values of the
functions as to the way in which the functions tended to behave for larger values of 7,
| but the hope was vain. If we restrict the contribution to 0-01/ for the larger values of 7,
) we find that the solution is restricted to & < 0-3, and accordingly it has been illustrated for
“ the value ¢ = 0-26418, corresponding to an ocean 30° wide.

From the resulting values of {j, {;, the values of {; and {, have been obtained by
adding respectively {; = Hsin?0 cos 2y, {, = —Hsin?f sin2y, and table 3 gives the
values of {j, &, (i, {5 R, y where

{ = Rcos (0t—y) = {, cosat+{,sin at.
Figure 1 gives the cotidal lines for y at intervals of 30°, and the co-range lines at intervals
of one-fifth of the maximum amplitude.
. An amphidromic point occurs on y = 0, = 58°, which may be compared with the
? position given in (8-2) ; a difference of 3° exists between the positions of the amphidromic
point in a very narrow ocean and in an ocean 30° wide.
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0 0°
20
40
60
80
90

0-333 20
40
60
80
90

1-000 20
40
60
80
90

-0

Ficure 1. Semidi-
urnal tide in ocean
30° wide. f = 10,
depth = 5:50 miles,
factor = 0-84H.
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TABLE 3. VaLuEs oF {{, &, {, &, R, y

£ = 10, ocean 30° wide. Semidiurnal tide X,

& & & & R Y
0-694 — 0-694 — 0-69 0°
0:465 — 0-582 — 0-58 0
—0-107 — 0:306 — 0-31 180
—0:789 — —0-039 — 0-04 180
—-1:274 — —0:304 — 0:30 180
—1-344 —_ —0-344 — 0-34 180

0-467 —0-036 0-582 —0:056 0-58 354
—0-105 —0-090 0-:301 —0-162 0-34 332
—0-789 —0-105 —0:050 —0-235 0-24 258
—1:274 —0-095 —0-319 —0-263 0-41 220
—1:344 —0-091 —0:359 —0-264 0-45 216

0-485 —0-104 0:586 —0-162 0-61 345
—0-088 —0-266 0-269 —0-473 0-54 300
—0-797 —0:282 —0-147 —0-657 0-67 257
—1:280 —0-208 —0-440 —0:692 082 238
—1:346 —0-188 —0-480 —0-688 0:84 235

13. APPLICATION OF METHOD TO NON-ROTATING OCFEAN, [ = 20

With a view to the discussion of the critical case where
f = m(m+1) and mis an integer, the simpler problems associated
with a non-rotating earth have been considered, using the
methods of this paper.

The equation to be solved is
V4 +2, s+2 —}—1922r73 =0 (7 7 S)’

: 13:11)
— —HfC,sin*f (r =s, even),

(
(13-12)
= HpSsin*0  (r=s, 0dd), (13-13)
(
(

where C =2° —22, 24 ... (reven), 13-14)

S, =2, —23, 25 ... (rodd), 13-15)

and 97 — sing (smﬁa )+ﬁzsin20 (13-16)
00 a0 ’

We shall take the same notation as in (5-11) and (5-12). The
boundary conditions on y = « follow from

ust

o 9% ' :
W% =0 (18-17)

W
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for each power of a, yielding [Z,,] = 0, [Z,] =0,
1 1 .
|:§§Z44+Z42:| =0, [5“! Z33+Z3l:| =0, (13-2)

From (13-12) and (13-13) we obtain
Zoy+92Zyy = —20 Hsin*0, Z,,+9%Z,, = 40 Hsin* 0,‘{

Z44+?9'2Z22 = 80 Hsin4 ﬁ, . (13'3)
Zy+922Z,, = 0, ]
and we immediately deduce
Zyy =0, Z,, =0, ]
Z,, = —*2 Hsintl, Z; = —20Hsin0,; (13-4)

Z,, = 80 Hsin*0, Zy, == 40 Hsin* 0. J

It may be noted that the sequence Z,,, Z,,, Z33, Zy, ... is independent of the value Z,,
and similarly Z,,, Z,,, ... are independent of the value of Z,,. For these functions Z,,

and Z,, we have
922y, = —20 Hsin*0, (13-51)

WLy = 42 Hsin' 0, (18-52)
from which we immediately deduce
Zyy = —§ 2y (18-53)
If we assume a series Zyy = ag-Fa,sintf+ ...,

then we obtain from (13-16) and (13-51)

ay(20sin2 ) +a,(22sin? 0 — 14 sin* ) 4+ a,(4%sin* f — 0sin®f) + ... = —20 Hsin*4.
(13-61)
It is evident that we can take a5 = a3 = ... = 0, and that we then have two alternative
solutions
(1) ay = a, = 0 with Zy; = —2 Hsin*/, (13-62)
(2) a, = 0 with Z, = 2 H(1—5sin?0). (1363)

The latter is in conformity with the general solution for a non-critical value of £ as given
in (7-15).

There is no criterion whatever for the ignoration of either of these solutions. We can
take the general solution to be

Zyo =Jf{2 H(1—55in?0)} —g{3 Hsin* 0}, (13-64)
provided that ftg=1. (13-65)


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

\

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

Pl
A
//g\\

SOCIETY

SOCIETY

A A

OF

)

y
S

OF

Downloaded from rsta.royalsocietypublishing.org

492 A. T. DOODSON ON

Hence fand g may both be very large, provided they satisfy the last equation, but one of
them must then be negative, and the limiting case, for which there is resonance, is when
J and g are opposite in sign and infinite in magnitude, when we get

Zy—Py(cost) x co. (13-66)

The indeterminacy, of course, implies the existence of a free oscillation.
A solution for the case f = 20 was given by Proudman and Doodson (1927) as
follows:

! 5 Hsind 5 gSin2e . 1371
{{ = —3%Hsin 190052x+6HSin4asm 0 cos 4y, ( )
, . . cos 2a . .

{y = % Hsin*fsin 2x———5ﬁ—HCOS 4(xsm“ﬂsmz})(, (18-72)

and it is evident at once that this solution, having a factor sin* , takes no account of the
solution indicated by (13-63).
If we write cos 2y = cos 20y = 1 — 202242 atyt— ...,
cos 4y = cos 4ayf = 1 — 82232 a4t — |
sec 20 = 14202412044 .. |

secdq = 14824180 gt

(13-73)

and expand these solutionsin the forms discussed above, we very readily obtain the same
functions as are given in (13-4), with the relations (13-53) and (13-62).

The investigation immediately above has an added interest, since it is known that the
development of the solution (13-71) and (13-72) must be convergent for a <<7/8; thus to
some extent the validity of the general processes is justified. If thedevelopmentsof (13-4)
are continued then the successive ratios of the coeflicients of any sequence with the same
value of s, such as Zy,, Z;,, Z,,, ... very rapidly approach theratio (8/7)2, indicating that
the coeflicients ultimately become proportional to the coefficients of powers of « in

=)
77
The behaviour of the coefficients in these sequences thus readily indicates the values

of « for which resonance occurs. Unfortunately, in the general case, no such simple
indications were discovered.

-1

14. FURTHER CONSIDERATIONS FOR THE CRITICAL VALUES OF f

The preceding exposition reveals that the solution given in 1927 for the tides on a
non-rotating earth was not complete. Itisreadily shown that the difference between the
two solutions (13-62) and (13-63) is proportional to P,(cosf) and that an arbitrary
multiple of P,(cos ¢) should be added to the expression for {] quoted in (13-71).
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Proudman has considered the tides in a very narrow ocean by a different method and
the following exposition is extracted from notes supplied by him.

If the ocean is very narrow then the transverse velocity » can be taken as zero, and the
differential equations yield

é—i—;ll—a%(sinﬂ%)—{—ﬂ{: —6Z, (141)

provided that we write { in the ““corrected’’ form
{ = H(sin?0— %) cos ot. (14-2)

The general solution of this differential equation is

{ = _%+{APm(cos 6) +BQ,,(cos 0)}cos o, (14-3)
where o f=m(m+1), (14-4)

and P, @ are Legendre Functions.

For finiteness from pole to pole, we must have m an integer, and since the semi-
diurnal tides must be symmetrical about the equator, we must have m an even integer.
Hence the solution becomes

{ = mlb,—fi_%+APm(cos 8) cos at, (14-5)

where m is an even integer, and 4 is arbitrary.

This expression reveals the distinction between the “free oscillations’” which may
become resonant, as for f = 6, and the “free oscillations’’ which are non-resonant, as
for f = 20.

If mis not an even integer then 4 = 0 and we get the same expression for { as has been
obtained in previous paragraphs. '

According to these investigations it would appear that any solutions for £ nearly equal
to 20 will be comparable with one another, but for § exactly equal to 20 we may get some-
thing very different. The former cases would give only one amphidromic point between
the pole and the equator, while the latter critical case may give two amphidromic
points.

In addition to £ = 20, one of the critical cases is that for § = 6. According to the
expression (14-5), resonance is indicated with f = 6, though the theory does not
indicate resonance for f = 20. It should be noted that in a second attack on the
problem of tides on a non-rotating earth, Proudman (1929, p. 211) discovered that for
an ocean 180° wide, if the value of £ is made to approach the value 6, a finite expression
is obtained, so that resonance does not then occur.

Vor. 238. A. 61
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15. DEVELOPMENTS IN TERMS OF ff

In order to determine the character of the solution near the critical points, the values
of the functions have been computed in terms of /.

The arithmetical work may be very considerably simplified by taking certain
multiples of the functions Z, so that all coeflicients in the expansions in terms of / are
integers.

_4(f—6) 5-
Let Y == —*—ﬁT{— Z, (10 1)
whence we get Y, = —14cos4d,

Y,, = cos 20 —cos 60,

and thence the coefficients of cosnf in the expansions for Y, Y,, and p,,, can be
obtained as follows:

-6,

n 167,, 647,, 768 % Dot
0 —236-+454 —904 + 1308 —352+618
2 304 — 648 1672 —2304 384 — 634
4 — 164208 —672+1368 0+138
6 — 48 —652—314 —224 494

8 — 4-p 552 — 10/ —

10 — 4458 —

The values of Z,, have been deduced from these values of 4’ as in § 10, and the polar and
equatorial values of {; have been computed as follows:

y; Polar values Oféi__@ & Equatorial values of A ;6 4
10 H(1— 3-702) —H(1— 4-1a?)
12 H(1— 49a2) —Hl - 4To)
16 H(1—11-0a?) —H(1— 3:3a%)
18 H(1—22702) —H(1+ 3-8a2)
19 H(1— 45722 —H(1+20-22?)
'2'1' H(l +.4.I5'5062) -—-H(]_ :.49'9062)

Consider these expressions for § = 18. When « is zero the polar and equatorial values
of {; have opposite signs; that is, there is only one amphidromic point between pole and
equator. It is clear that for quite a small value of « the value of {; at the pole becomes
zero; that is, as « increases, a second amphidromic system develops at the pole and
travels towards the equator, and the tides at the pole and equator are then both
“indirect”. The rapidity of change with « is even more marked with £ = 19.

When, however, we pass through the critical value of f, there is a reversal of the
phenomena, for with £ = 21 it is the polar tides which remain unchanged in sign for all
small values of a, while the second amphidromic system develops at the equator and
travels away from the equator as a increases. Moreover, the tides at the pole and equator
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are ‘“direct”’. Thus the tides are completely reversed in sign between f = 19 and f = 21,
and it is hardly possible to avoid the conclusion that for some intermediate value of #
(not necessarily f = 20) there is resonance.

These results are supported by the investigations of Part V, but they can only be
regarded as indications of the character of the changes taking place in the tides as the
depths and widths of the ocean change, and there is still a desirability for further
elucidation of these changes by analytical methods.

PART V. SOLUTIONS BY USE OF FINITE DIFFERENCES: SEMIDIURNAL TIDES

1. INTRODUCTION

The methods used in this memoir are essentially very different in character from
those developed in the first four parts, and in one sense they are experimental as
the methods of finite differences on such a large scale have never been exploited in
connexion with tides in oceans. The great difficulties involved in the use of the common
mathematical functions, due to slow convergence of series, even for simplified oceans,
appears to set a limit to their use, whereas finite differences can find application,
or should be usable, for any types of variations of ocean depths and contours, so that
undoubtedly there is a large field of use. In this memoir the methods have been success-
fully applied to the evaluation of the semidiurnal tide (K,) in oceans of constant depth
up to 90° wide, five cases being evaluated and illustrated. Though it is not expected that
the solutions are of great accuracy, yet the variations in the character of the solutions
are probably quite genuine, and offer a trustworthy guide to the relation between the
dynamical response of the tidal motion and the width of the ocean.

It has been considered unnecessary to print all the tables referred to in the text, and only those
tables which have been deemed essential are included herewith, namely, tables 30-34. The MS.
tables, however, have been deposited with the Society and will be available for reference whenever
required.

2. NOTATION AND FUNDAMENTAL EQUATIONS

The notation and fundamental equations are the same as are used in Part IV, 2 and 3,
and it is sufficient to quote equations (3-61), (3:62), (3-71) from Part IV, these being the
equations which are subjected to the operations of finite differences. We thus have

% g .

271! 1 2 __ 6 .

V2 + 3X2+77#3X = — fHsin% § cos 2y, (2-11)
opr 1 075 08 arr 6p ,

V2{, + P v o = fH sin®#sin 2y, (2:12)
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with 7 = 2—sin%0, (2-21)
V2Z = Z"sin?0—Z'sin 0 cos 0+ fZsin* 0, (2-22)

where dashes denote differentiation with respect to 6.
The boundary conditions require

vy,=0, v,=0 on x=+a

and from Part IV (8-51) and (3-52), these conditions are satisfied when

G _ . G _ .
—az—smﬁcosﬂﬁ—o, (2-31)
ST 06 _ :
7}2—1—51nﬁcosﬂ—a-9——— . (2-32)
We shall write x = sin?0, ~ (2-4)
P={, Q=10 (2:5)

and intervals in y will be denoted by e.
We shall compute P and @ on the meridians for which

o x= (-3, (2+6)
where 7 is an integer.

3. CHOICE OF VARIABLES AND INTERVALS

It is a matter of some considerable importance to choose variables and intervals with
great care, lest the errors associated with the use of finite differences become excessive.
Fortunately, the results of Part IV are available for the purpose of testing alternative
methods, and experience showed that it was much preferable to choose the prime
variable in latitude in the form

x = sin?0,

rather than 6, sinf, or cosf. The conditions near the pole appear to be of equal im-
portance with those near the equator, so that both sin# and cos  are ruled out, as the
former gives a preponderance of points near the pole and the latter gives a preponder-
ance of points near the equator. Though this difficulty does not arise with the choice of
g itself, yet the occurrence of such factors as sinf 4 in the equations necessitates the con-
sideration of very high orders of differences, whereas when the prime variable is x such a
factor only implies the necessity of third differences at most, and in general it has been
found that it is much better to choose x rather than 6.

It has been found satisfactory to take intervals of 10° in longitude and 0-1 in x.
There is no advantage in taking very small intervals, at least in the methods used in
this memoir, for the formulae give sequences of terms with alternating coeflicients, and
the smaller the interval the greater the rapidity of alternation and the greater the size of
the coefficients.
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4. EQUATIONS IN TERMS OF ¥
Equations (2-21), (2-22), (2-31) and (2-32) become
n=2—x,

V2Z — 4x2(1—x) 02 gy

%) g — 22 Z+ﬁ 2Z,

¢, ¢y
v, =77%—2x(1——x)9—%,

¢ 3§z
V,= W +2x(1 —x)

where V; and V, are proportional to v,, v, respectively.

5. EQUATIONS RESULTING FROM USE OF FINITE DIFFERENCES

We shall take dy = € = 0-1745329,
ox = 0-1,
and we shall denote by P, Qua
the values of & &

for x = 0-1m and y = (n—1%) ¢, where m and n are integers.
We shall replace, in general terms,

t?Z

3 —2 by $(Z,—Z_,),
027
62“37;) by (£,—2Zy+Z2_,),

and we then obtain from (2-11) and (2-12) the expressions

X Pm n+l+an,n+l

= —ﬁH€2x3 Cos QX_'Pm, n—1 + an, n—-1"_ me—l, n
Y= Qm,n+l —aP,

m, n+1

+cP, ,—dP,

= ﬂH62x3 sin QX_ Qm, n—1 _aPm, n-1"" me—l, n+ch, n de+1, ns

where a = jer,
b = 1006242(4-1 — 4x),
¢ = 2+4100¢%(8x2 — 8x3— 0-01/4%2),
d = 100e2x2(3:9 —4x).

m+1,n>

497

(4-11)
(4-12)

(4-21)

(4-22)

(5-11)
(5°12)

(5-21)

(5-22)


http://rsta.royalsocietypublishing.org/

%

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
' \
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

498 A. T. DOODSON ON

It is evident from these equations that if we know P and ¢ on meridians corresponding to
(n—1) and (n) then we have two equations to determine P and @ on meridian (z4-1).
As it is inconvenient to solve the two equations for each occasion we therefore write

Pm,n+1 :fX—gY> Qm,m—l *—‘fY%—gX, (5‘51)
' 1 a
where f: it{“_dij g = m. (5'52)

6. FORMULAE FOR POINTS NEAR THE EQUATOR

Since the variable «x, considered non-physically, can proceed beyond unity, it is
necessary to consider the points near the equator. On the equator itself we have

0’z
VZ = ¥ +pZ,
and therefore this gives the expression
P —2P, P
Vsz,n - m+1,n (&;,),g‘l" mml’"—‘—ﬂpm,ni (6'1)

where m here corresponds to § = 90°.
Since the corresponding value of # is such that sin? (§) = 0-1 we have

(80)2 = 0-1035234,
so that we get ¢ = 2+4¢€%(19-31930—4),
b= 2x965965¢2,

with d suppressed since P, , has been written equal to B, _, ,
about the equator.

Examination of the formulae shows that this modification takes care of all the
conditions to be satisfied arising from the fact that the values of the elevations are
symmetrical about the equator for semidiurnal tides.

The above formulae have been used in the main computations of this paper, but for
the special investigations of the tides in very narrow oceans it was found necessary to use
the more accurate formula

because of symmetry

VQPIO,n = 10P8,n"|“ 401:)9, n_ (30ﬂ‘ﬂ) P]O, ne (62)

7. ARRANGEMENT OF COMPUTATIONS

It is convenient to arrange the values of P and @ in ““cells’’ under the values of n and
against the values of m; though only the functions appearing in the above formulae are
given below, it must be understood that all the values of £ and @ for any given value of z
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are written in the column. The coefficients of those values of P and @ required to give

P, .+12and Q, ., are also written out on corresponding forms, as illustrated below.

Arrangement of Multipliers for Multipliers for

functions computation of computation of
P and Q P, [0 —

- Pm—l, n - bf - bg
- Qm—-l n bg - b‘f
Pm,n—-l Pm.n "'f+dg ('f —Qf—'g 24
va n—1 Qm, n 4f+g —g '—f+ ag Qf
- Pm+l, n - df - dg
Qm+1, n dg _q'f

It should be obvious that when the initial values of P and ¢ have been written down in
the two initial columns for (n—1) and (z) then the strips of paper containing the multi-
pliers can be placed alongside the two columns and the cross-multiplications and sum-
mations of the products rapidly effected to give the values of P and @ for (1), which
are entered in the next column.

Tables 1 and 2 give lists of the multipliers as required above, for £ = 10 and § = 20.
Each line of the tables gives a set of multipliers for a given value of m.

In the case of the particular integral it will be necessary to add to the results of the
above process the values of

P’ = —pe®x3H{ fcos (2n—1) e+ gsin (2n—1) ¢}, (7-11)
Q' = pe*x3H{ fsin (2n—1) e—gcos (2n—1) ¢}, (7-12)

and these are tabulated in table 3 for n =1 to 4, and f = 20. For /§ = 10 the values
should be divided by 2.

8. THE COMPLEMENTARY FUNCTIONS

The solution of the problem in view is to be effected by the combination of a number
of complementary functions with a particular integral, and there is a very wide choice of
such functions. For instance, it would be possible to assume P = sin”f, ¢ = 0 on one
meridian, with = sin®# on an adjacent meridian, and by varying » and s sufficiently
the problem, no doubt, could be solved. But it has been judged better to leave as
unspecified the values of P and @ on the meridians y = 4-¢ for the 11 special values of
x = 0-0,01,0-2, ..., 1-0. Itis clear that the values of P and @ on other meridians will be
linear functions of these unspecified quantities.

Since it is known that there must be symmetry in P and asymmetry in ¢ about the
central meridian y = 0, we thus have standard cases in one of which we take

Q — O, P:Ao, Al’ ooy AIO on bOthXZ :}_—6‘,
P=0, +Q=B,B, ..., B,ony= -te.

Since @ must be zero at the pole, we have no value B,
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It is obvious that the coefficients of each 4 and B can be worked out independently of
the rest, so that a number of ““complementary functions” (as they may be called for
want of a better term) can be so evaluated. At first sight, when we consider these func-
tions, there may be an appearance of unreality about them, because a function which is
zero for all values of x other than a particular value x = 0-1m would appear to be so
discontinuous as to make it impossible to apply finite-difference formulae. If it is
remembered that it is the assemblage of functions which will represent a continuous
function, that the justification for the integration by finite-difference formulae depends
upon the rapid convergence of the differences of the end-product, and that the ‘““func-
tions” are only coeflicients which are being worked out in this manner for the sake of
convenience, the difficulty should disappear.

The reason for the choice of meridians y = -+¢ is now clear, for the processes of § 6
require the values of P and @ to be known or assumed on two meridians. Itis possible to
begin with a central meridian but the initial processes are needlessly complicated.

The following table illustrates the early stages of the computations for the comple- -
mentary function which is the coefficient of 4;, § = 20. It will be seen that the numerical

EXAMPLE OF COMPUTATIONS OF P AND @

x n=—1 n=1 n=2 n=3
0-3 P — — — 0-779890
Q ,_ — - 0-229343
0-4 P — — —1-099556 —8:656653
Q — — —0-153527 —2:277442
0-5 P 1-00 1-00 3:845115 21-568070
Q 0-00 0-00 0-372425 5085188
0-6 P —_ — —1-836842 —16-410145
Q — — —0-224412 —3-886281
0-7 P — — — 3-470170
Q — — — 0-829131

quantities increase rapidly, and alternate in sign. To exhibit the functions in this form, as
computed, would take too much space, but tables 5-8 give the coefficients of 4,, and B,,
in the expansions for P and @ on meridians » = 2, 3, and § = 10, while tables 9-16 give
values for n = 2, 3, 4, 5 and § = 20. A comparison with the above standard form will
quickly reveal the relationship between the two forms.

9. THE PARTICULAR INTEGRAL

There is a latitude of choice with regard to the Particular Integral. It would be
possible, for instance, to take Laplace’s solution for an ocean covering the whole earth,
but it is simpler in many ways to assume P and @ to be zero on the initial meridians,
seeing that special values 4 and B have been allotted to P and ¢ on these meridians for
the complementary functions.
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TIDES IN OCEANS BOUNDED BY MERIDIANS 501

The procedure for the computations is like that used for the complementary functions,
except that it is necessary to add the values of P’ and @’ from tables 3 and 4 in order to
give P and @ respectively. It should be noted that the values of P’ and Q' for » = 1 have
to be used for the computation of P and @ for » = 2, and so on. The results are included
in tables 4-16 as the coefficients of H.

10. THE BOUNDARY EQUATIONS

The boundary equations resulting from the use of finite differences in (4-21) and
(4-22), taking central differences about the bounding meridian as well as along it,
yield

28648(Qm,n+1~ Qm, n—-l) - le(l *—.X') (Pm+l,n_‘Pm—l,n)’ (10‘11)
2'8648(Pm, n+1 —Pm, n—l) + lox(l _x) (Qm+l, n Qm—l, n)’ (10'12)

as the contributions to V| and V, respectively.

For the computations, the coeflicients are arranged to suit the forms discussed in § 7,
and the resulting coeflicients of 4, B, H in the expansions for ¥, and V, are given in
tables 17 and 18 for n = 2, f = 10, and in tables 19-24 for n = 2, 3 and 4 and f = 20.

It has been remarked that these formulae use central differences and so cannot be used
for the case where the bounding meridian is the one for which #» = 5. Since the central
difference formulae ignore third differences we can obtain suitable formulae, perhaps
not quite so accurate as those given above, by assuming third differences to be zero,
and thus writing in the standard formulae (10-11) and (10-12)

P,6:3P

m m, 5

— 3Pm, 4+Pm, 3>
which yields

(2:8648Q,, 4 11-4592Q,, ,+8-59440,, ) —10x(1—%) (P, 5= Py 1 5),  (1021)
(2-8648F, ;—11-4592P, ,+8:5944PF, ;) +10%(1—%) (@115~ @p1,5),  (1022)

as the contributions to V; and V, respectively.
The resulting expansions are given in tables 25 and 26.

11. THE SOLUTION OF THE EQUATIONS

The 20 simultaneous equations resulting from the application of the boundary
conditions have been solved by ordinary methods which call for no special comment.
It is, however, necessary to distinguish between the “real accuracy” and ‘““nominal
accuracy”’. The former depends upon the assumptions made in the formulae used, and
the computer called upon to solve the resulting equations is not at all concerned with
the real accuracy, but he must furnish a solution of the equations which accurately
represents those equations. It is essential to maintain the nominal accuracy in this
sense because the equations have very large coefficients of alternating sign so that any

VoL. 238. A. 62
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502 A. T. DOODSON ON

excessive restriction of the significant figures retained in the computations will inevitably
result in large casual errors which will cause much trouble and uncertainty. Hence
there has been maintained numerical consistency to as high an order as possible.

It will be noted that there are only 20 equations whereas there are 21 unknowns in 4
and B to be evaluated in terms of H. The equations have been solved so as to give each
unknown in terms of 4; and H, and in each case the results obtained have been substi-
tuted back in the equations for V; and V,, and small adjustments have been made where
necessary in order to reduce the residues. The numerical accuracy is very good as the
greatest numerical residues for ¥, and V, are generally less than 0-01/, and the greatest
residue is 0-026H, for n = 4, x = 0-9, f = 20. The residual values near the pole are
extremely small, and this is an important point because the actual velocities vary as
Vcosec3 6.

Itis interesting to compare these residual values of V with the values of V obtained in
Laplace’s solution for an ocean covering the whole earth. The latter increase from zero
at the pole to 5-6H at the equator for # = 20 so that the residues we have obtained may
be considered as very small indeed.

The solutions giving each 4 and B in terms of 4, and H are given in table 27.

12. THE DETERMINATION OF 4,

There is only one satisfactory method available for the determination of the quantity
A4, in terms of H, which is to use the theorem of constant volume ; that is, we have to make

J(jlsinﬂdﬁdxzo, (12:1)

where the integrals are effected over the whole ocean.
Taking firstly the integral with respect to 0, we have to obtain a formula for

f f " Psin0 b, (12-2)
0
where P, as usual, stands for {]. This can be written as
~f Pdy, (1231)
or, in terms of finite differences, ’
—XPéu= —2XPi(J(1—x)). (12-32)

Taking this formula with x = 0-0, 01, ..., 1-0, we get the formula
1P(1—/0-9) + 1P (1 — J0-8) 4 5P, (JO-9 — JO-T) +.... (12-4)
An alternative method of considering (12-2) is to integrate it by parts, which yields
P+ X /(1 —x) 0P (12-5)
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and this gives the formula
Py(1—,/095) -+ P,(,/0-95 — /0-85) +.... (12-6)

The two formulae have been tested by taking P = 1, «, %, 5, and it was found that
(12-4) gives results consistently low while (12-6) gives results consistently high. A com-
bination in the ratio of 2 to 1 in favour of (12-6) was adopted, and the factors for P, are
given below.

FACTORS GIVING INTEGRAL WITH RESPECT TO

P, 0-02544 P, 0-06466 P, 0-11372
P, 005275 P, 0-07089 P, 0-18366
P, 005595 P, 0-07937 P, 0-20178
P, 005984 P, 0:09195

(127)

When this formula is applied to the case P = x, x%, x® we get the results
0-6658, 0-5332, 0-4577,
the correct values being 0-6667, 0-5333, 04571,

so that the formula is a very accurate one.

The later investigations of the tides in very narrow oceans required even more accurate
formulae, because the integrals only yielded small quantities. By taking linear combina-
tions of P, (m even) and solving six simultaneous equations it was possible to obtain
formulae accurately representing integrals of powers of x up to #%, and similar combina-
tions (m odd) gave a formula accurately representing integrals of powers of x up to x°.
In practice the average of these two formulae was used. The coefficients are as follows:

0019360 P, 0-082982
0055315 P, —0-076471
0101010 P, 0-335689
0-004810 P, —0-190559|
P, 0202622 P,  0-348359
P,, 0-116883

(12-8)

oY Y Y 2V

With regard to the integral with respect to y, formulae involving the neglect of fourth
differences have been used, derived from

1
f Zdz = £[9Zy 1+ 19Z, —5Zy 4 Z4], (12-81)
0

3
f Zdz = J[9Z,+21Z, +21Z, +9Z,]. (12-82)
0

62-2
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504 A. T. DOODSON ON

When these are applied to values of Z on the meridians n = 1, 2, ... and if note is taken
of the fact that there is symmetry about the central meridian, we obtain the following
formulae:

Integral from y = 0° to 15° = J4[27Z,+9Z,] ¢, (12-91)
Integral from y = 0° to 25° = 5 [23Z, +28Z,+9Z,] ¢, (12-92)
Integral from y = 0° to 35° = J4[24Z, 232, +28Z,+9Z,] ¢, (12-93)
Integral from y = 0° to 45° = ;4 [24Z,+24Z,423Z,4+28Z,+9Z;]¢, (12-94)

where Z is any quantity on meridian n = 7, and ¢ is the interval in ¥, here taken equal to
0-17453.

When these formulae are applied to the integral of cos 2y from the central meridian
to the meridians for which 7 is 2, 3, 4, 5 we get the values 0-25004, 0-3831, 0-4700,
0-5002, the correct values being 0-25000, 0-3800, 0-4699, 0-5000 respectively, so that the
formulae are amply accurate.

It is a simple matter to apply the formula (12-7) to the coefficients of 4, B, and H in
tables 5-16 and thence to apply formulae (12-91) to (12-94), including the proper
value of ¢, in order to produce the results given in table 28, for § = 20 only, which also
includes the contributions from {.

The values of 4 and B resulting from the solution of the equations and given in
table 27 have been multiplied by the factors of table 28, and the sums of the products
have yielded equations between 4, and H, as given below, for § = 20.

Ocean 30° wide : —0-0048304,—0-010453H = 0, A, = —2-16420H.
Ocean 50° wide : —0-0677944,-+0-534743H = 0, A,= 7-88776H.
Ocean 70° wide : —0-0217254,10-106875H = 0, A,= 4-91945H.
 Ocean 90° wide :  0-0341244,0-215190H —= 0, A, — — 6:30604H.

In the case of f = 10 the integrations were performed by the method of (12-4) after
the values of P had been computed in terms of 4, and H, so that no table of factors has
been prepared.

13. CoMPUTATION OF {; AND {,

After substituting the values of 4, in table 27 we obtain the values of 4 and B in
terms of H and it only remains to substitute these in tables 5-16 in order to get the values
of Pand @ on the standard meridians. These are the values of {{ and {;, and to them must
be added the values of {; and {, in order to give the final products, {; and {,. These
results are given in tables 30-34. No values of R and y have been computed but figures
1-4 give illustrations of the tidal charts (§ = 20 only, see § 14), which have been obtained
from the values of {; and {, by a graphical process.
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TaBLE 30. VALUEs OF {; AND {,, OCEAN 30° WIDE

Semidiurnal tide K,, # = 10

x = b5° x = 15°
x & & & &
0-0 . 064 0-00 0-64 0-00
| 0-1 0-58 —0-04 0-58 —0-12
<1, 0-2 0-51 —0-09 0-51 —0-25
— 0-3 0-43 —0-12 0-42 —0-36
< 0-4 0-34 —0-16 0-32 —0-45
P > 0-5 0-25 —0-19 0-21 —0-54
@) = 0-6 0-15 —0-21 0-08 —0-61
& 48] 0-7 0-03 —0-24 - =005 —0-66
— 0-8 —0-09 —0-26 —0-19 —0-71
= 0O 0-9 —0-23 —0-27 —-0-35 -0-73
O 1-0 —0-39 —0-28 —0-51 —-0-73
=w
22
%C_D TABLE 31. VALUES OF {; AND {,, OCEAN 30° WIDE
[ .
§g s Semidiurnal tide K, # = 20
7]
oz x =5 X = 15°
I -
el x & & . & &
0-0 —2-16 0-00 —2-16 0-00
0-1 —1-30 0-:09 —1-36 0-28
0-2 —0-56 0-12 —0-60 0-37
0-3 0-04 0-09 0-05 0-30
0-4 0-49 0-02 0-55 0-11
0-5 0-80 —0-07 0-87 —-0-17
0-6 0-93 —0-18 1-01 —0-48
0-7 0-88 —0-29 0-92 —0-80
0-8 0-61 —0-40 0-59 —1-07
09 0-07 —0-48 —0-01 —1-25
1-0 —0-83 —0-53 —0-93 —1:25
< TaBLE 32. VALUES OF {; AND {,, OCEAN 50° WIDE
2 — Semidiurnal tide K,, # = 20
SH x =5 x = 15° x = 25°
M m /"—'—"k—-_\ /—"’k‘——_\ A
o) 5 x & & & & & &
an 0-0 7-89 0-:00 7-89 0-00 7-89 0-00
©) 0-1 4-95 —0-46 512 —1-37 5-50 —2-25
v 0-2 251 —0-67 2-59 —2-05 282 — 352
- 0-3 0-54 —0-72 0-44 —2:21 0-28 —3-88
5z 0-4 —1-00 —0-65 —~1-29 —~1-99 —1-86 —3-51
=0 0-5 —2.07 —0-48 —2:52 —~1-49 —3:42 —2:61
& 0-6 —2-63 —0-25 —3-20 —0-77 —4.28 ~1-35
Q<0 0-7 —2:59 0-05 ~321 0-10 —4-33 0-10
o 0-8 —179 0-39 —2:43 1-07 —3-44 1-57
=< 0-9 —0-05 0-77 —0-67 2-08 —~1-48 2-86
Lol 10 3-08 1-19 2-44 3-06 172 3-65

505
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TABLE 33. VALUES OF {; AND {,, OCEAN 70° WIDE
Semidiurnal tide K,, # = 20

x = b° y = 15° y = 25° y = 35°
et SN e s et e e,

x & & 1 & & & & &
0-0 4-92 0-00 4-92 0-00 4-92 0-00 4-92 0-00
0-1 3-:00 —0-31 3-12 —-0-93 3-39 —1-53 375 —2-06
0-2 1-46 —0-48 1-53 —1-45 1-69 —2-44 2-02 —3-46
0-3 0-22 —0-56 0-18- —1-68 0-15 —2-85 0-16 —4-12
0-4 —-0-74 —0-57 —0-89 —1-71 —1-17 —2-89 —1-53 —4-14
0-5 —1-38 —0-53 —1-65 —1-58 —2-16 —2-62 —2-87 —3-66
0-6 —1-65 —0-44 —2-04 -1-30 —2-76 —2-11 —372 —2-79
0-7 —1-44 —0-30 —1-97. —0-88 —2-86 —1-39 —3-96 —1-66
0-8 —0-65 —0-11 —1-30 —0-32 —2-36 —0-49 —3-47 —0-40
0-9 0-94 0-15 0-13 0-40 —1-08 0-58 —2-12 0-84
1-0 3-68 . 0-48 2-66 1:31 1-19 1.77 0-33 1-84

TaBLE 34. VALUES OF {; AND {,, OCEAN 90° WIDE
Semidiurnal tide K,, £ = 20
x =5° x = 15° x = 25° Yy = 35° x = 45°
——— e R rm— s e P N

X & & & & & & & & & &
0-0 —6-31 0-00 —6-31 0-:00 —6-31 0-:00 —6-31 000 —6-31 0-:00
01 —-370 0-37 —3-89 1-:09 —4-27 178 —4-87 2:39 —569 2-86
02 —1-46 0-57 —1-65 1-71  —2-04 290 -2-71 416 —3-79 5-48
0-3 0-44 0-65 0-32 1-98 0-11 3-38 —0-26 498 —0-82 7-01
0-4 2-00 0-66 1-92 1-99 1-84 3-34 1-92 4-83 2-33 6-81
0-5 3:18 0-62 3:08 1-83 3-04 2-93 3-35 3-96 4-47 5-06
0-6 391 0-55 373 1-56 3-57 2-32 3-81 2-75 4-96 2-70
0-7 4-08 0-45 3-73 1-21 3-30 1-60 3:21 1-45 3-84 0-68
0-8 3-54 0-33 2-94 0-81 2-09 0-82 1-51 0-17 170 —1-50
0-9 2-05 0-18 1-10 0-36 —0-30 0-07 —1-564 —068 —2-28 —1-52
1-0 —0-88 001 —-2-30 —-0-16 —446 —-073 —-619 -—148 —6-98 —1-81

14. COMPARISON WITH SERIES METHOD OF PArRT IV

The solution obtained in this present part for f = 10 is practically the same as that
obtained in Part IV by the series method, and the tidal charts are practically indistin-
guishable from one another, so that it is not necessary toillustrate for f = 10 the results of
this Part. At the pole the values of {; are respectively 0-69H and 0-64H from Parts IV
and V. On the bounding meridians at the equator the values of {; are —1:35H and
—1-38H, while the values of {; are —0-23H and —0-19H. The amphidromic points are
situated on the central meridian at ¢ = 57°-8 (Part IV) and ¢ = 59°1 (Part V). The
agreement between the two methods is considered to be quite satisfactory.

15. VERY NARROW OCEANS

The investigations made in Part I'V relative to a very narrow ocean have been con-
tinued by the methods of finite differences for oceans 10° wide (« = 5°) and § = 18, 20,
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and 22. The equations for V; and V, are given in tables 35 and 36 for § = 20, and the
corresponding tables for f = 18 and 22 are very simply derived as instructed at the feet
of these tables. The resulting values of 4 and B in terms of 4, and H are given in table 37,
from which, after including {;, we obtain by the application of (12-8) the following
equations:

=18, —0-04424,—0-0083H = 0, whence 4, — —0-19H, (15-1)
f =20, —0-01714,—0-0169H = 0, whence 4, — —0-99H, (15-2)
f =22 0-00184,—0-0216H = 0, whence 4, = 11-7H. (15-3)

From the resulting values of {; we deduce the positions of the amphidromic points on the
central meridian as follows:

f =18, 0 =16°and 65°,

f =20, 0=27°and 69°,

B =22 0= 32°and 72°.

These results can be considered in relation to the results of the investigations of
Part I'V, § 15, so long as we remember that we cannot expect very accurate numerical
consistency on account of the errors of approximation inherent in each method. In
Part IV we deduced that for any given value of f# approaching the critical value f = 20,
there is a definite value of width of ocean marking the division between the tidal regime
with only one amphidromic system, and that with two amphidromic systems, between
pole and equator, and for this particular value of « the tides vanish at the pole. This
deduction is strongly confirmed by the above results, since it is evident that for the case
there considered (¢ = 5°) the value of 4 is zero when £ is approximately equal to 17.

Another general deduction obtained in Part IV was to the effect that resonance
occurs for values of f somewhat greater than the critical value (f = 20), this taking place
for a value of @ appropriate to the depth of the ocean. This conclusion is also vindicated
by the above results, since it is clear that resonance takes place when f = 21-8, approxi-
mately.

For values of § near the critical value, it seems quite certain that though the tidal
regime may be of the single amphidromic type for an ocean of infinitesimal width, yet
there are very rapid changes as the width becomes appreciable, with a rapid transition
to the dual system of amphidromic points between pole and equator.

16. INVESTIGATIONS BY GOLDSBROUGH AND COLBORNE

The lunar semidiurnal tide (A,) has been determined by Goldsbrough and Colborne
(1929) for an ocean 60° wide and constant depth corresponding to £ = 22-9. The method
used is quite distinct from that used in any of this present series of memoirs and it is
desirable to discuss the results now obtained in relation to those obtained by Goldsbrough
and Colborne.
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Goldsbrough and Colborne’s results indicate approximate resonance, with a maxi-
mum amplitude of 37H, and a characteristic feature is that the amplitude of tide at the
pole is comparatively very small indeed, being only 0-5H.

It might be expected that where the tides are small over a large region of the ocean,
the cotidal systems may become very complicated, and the chart of cotidal lines as
given by Goldsbrough and Colborne shows a very complex system of four amphidromic
points between pole and equator, in our notation, as follows:

one at = 61°-5 on the central meridian,
one at § = 44° on the central meridian,

two at = 34° on the meridians y = 4 18°.

The closeness of these amphidromic systems raises difficulties of interpretation, so
much so that the question needed to be considered as to whether the systems were real or
simply due to inaccuracies of the solution. Some weight was given to this doubt by the
fact that the amplitudes of tide in the region are very small and only two or three times
the known errors of the solution (judging from the fact that the solution gives amplitudes
of 37-6H and 36-6H at the boundaries on the equator, and as these should be equal, the
possible error appears to be 0-5H). Further, one would naturally expect the null lines on
{; and ¢, to be more regularly spaced than the solution indicated.

Professor Goldsbrough kindly supplied the values of the elevations computed for
values of y at intervals of 0-1, and the values of y at intervals of 10°. A scrutiny of these
immediately yielded the result that an amphidromic system near the pole had been
overlooked, at # = 6°, y = 0, but otherwise the numerical values appear to offer no
support to the possibility that the complex systems were due largely to errors of approxi-
mation.

Further remarks on this work will be made in relation to the discussion of the results of
this memoir, and, to facilitate the comparisons, Goldsbrough and Colborne’s chart has
been redrawn with the new amphidromic system inserted near the pole, and co-range
lines have been added. The chart has been figured in conformity with the notation of
this memoir.

17. DISCUSSION OF RESULTS

If we consider the results as depicted in the charts we see at once that there is a very
marked stability of tidal regime as the width of the ocean increases. There are two
amphidromic systems around points on the central meridian as follows:

[ = 20, ocean 10° wide, ¢ == 27° and 69°,
f = 20, ocean 30° wide, § = 31° and 71°,
f = 20, ocean 50° wide, § = 35° and 72°,
f = 20, ocean 70° wide, ¢ = 35° and 67°,
f = 20, ocean 90° wide, = 31° and 81°.
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Very close agreement between the positions of the amphidromic points thus occurs for
all widths of oceans. This may be taken as valuable testimony to the accuracy of the
results for the very narrow ocean; it was a possibility to be considered that as the equa-
tions between 4, and H for the narrow ocean involved relatively small quantities, the
equations might have been affected by the errors of the finite-difference methods.

Another highly confirmatory factis that the zero values for P,(cos #) occur at = 30-6
and 70-1. Itis evident, therefore, that this function is dominant for / = 20, though in the
theories discussed in Part I'V this function is only associated with a free motion so long as
the ocean is extremely narrow. In view of the conclusions of §15, it is probable that this
dominance comes into effect as soon as the width becomes appreciable, but there is
need for more precise analytical investigation before this matter can be satisfactorily
explained. '

" Similarly, it is interesting to notice that for an ocean 50° wide the polar tides are
direct and they remain so for the ocean 70° wide, but they become indirect again for the
ocean 90° wide. These effects can be investigated by referring to the equations relating
4, and H as given at the end of § 12, from which it will be seen that, assuming continuity,
the coefficients of A4, are negative for the oceans of width 30°, 50°, 70° and become
positive for the ocean of width 90°, whereas the coeflicients of /1 are positive for the last
three cases and negative for the first one. We conclude:

(a) that for an ocean rather more than 30° wide the coefficient of H becomes zero and
therefore we get 4, = 0;

(b) that for an ocean approximately 78° wide the coefficient of 4, must become
infinite, indicating a resonant case.

We see therefore that there are two ways in which the polar tides may change from
“indirect tides” to ““direct tides” and vice versa. (It may be noted in passing that the
coefficients of H appear to reach a minimum between 2z = 70° to 90°, and if this
minimum happens to be less than zero a very interesting and complicated sequence of
tidal charts can be contemplated, as both the above cases would exist in rapid sequence.)

Goldsbrough and Colborne’s solution appears to come under case (¢) and this
possibility removes a difficulty which had existed in comparing their solution with an
expression later obtained by Goldsbrough (1933, p. 250, case ii) for the free oscillations
of an ocean 60° wide, f§ = 22-54, and a semidiurnal tide of rather smaller speed than
that of M,. Goldsbrough’s results, even allowing for the smaller terms he evaluates,
show that the tide is represented by an expression with a predominant term proportional
to P,(cos ). He expresses the opinion that more terms might reproduce the four amphi-
dromic points of the earlier paper (five as now amended) whereas the approximate
results do not give more than the two amphidromic points referred to above for the very
narrow ocean. He does not remark, however, on the discrepancies as regards the
distribution of elevation. In the 1929 paper, as we have stated, the polar tide was
negligibly small, whereas the 1933 paper would indicate a polar tide over twice as great
as the equatorial tide. .
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The above discussion reveals that the case chosen by Goldsbrough and Colborne
happens to be rather abnormal.

No special comment needs to be made on figure 2, for an ocean 50° wide, as the
amphidromic systems are of the normal type, but the charts given in figures 3 and 4 are
very interesting in connexion with the amphidromic systems in low latitudes. The
former chart shows an amphidromic system in which the cotidal lines, instead of radi-
ating at approximately equal intervals, are osculatory. This type of amphidromic
system has been revealed once previously, for the diurnal tides in a hemispherical
ocean on a non-rotating earth (Proudman and Doodson 1927, figure 6).

Ficure 1. Semidiurnal tide Fioure 2. Semidiurnal tide Fieure 3. Semidiurnal tide
K, in ocean 30° wide. f K, in ocean 50° wide. S K, in ocean 70° wide. f
= 20, depth = 2-75 miles, = 20, depth = 2:75 miles, = 20, depth = 2-75 miles,
factor = 2-2H. factor = 7-9H. factor = 4-9H.

The explanation of this system and the system shown in figure 4 for the ocean 90° wide,
where many of the lines are very close to one another, is found by studying the null lines
of ¢, and {,. These null lines can be considered as nodes in oscillations, and the amphi-
dromic points occur, of course, at the intersections of the two sets of lines. The null line
for ¢, is represented by the cotidal line y = 90° or 270° and it is evident from figures 1-4
that this line is approximately stationary, though it has moved towards the equator in the
last figure. One of the null lines for {,, represented by the cotidal line y = 0° or 180°,
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moves steadily to the equator. In figure 3 it happens to be tangential to the null line
(y = 90°, 270°) for {;, giving the osculatory case referred to and in figure 4 it has passed
through the null line for {;, but as it remains near to it the cotidal lines remain crowded
together near the central meridian. But only the central part of the null line y = 0°,
180°, has crossed the null line y = 90°, 270°, so that at the intersections amphidromic
points develop in longitudes y = 30°, approximately.

Ficurke 4. Semidiurnal tide K, in ocean 90° Ficure 5. Semidiurnal tide A4, in

wide. g = 20, depth = 2-75 miles, factor ocean 60° wide. g = 22-9, factor =

= 6-3H. 37H (after Goldsbrough and Col-
bourne).

It is evident also that a similar explanation accounts for the complex amphidromic
system obtained by Goldsbrough and Colborne, and the positions of their null lines can
readily be traced from figure 5.

No attempt will here be made to discuss further explanations in general terms as it is
hoped to consider in a later memoir the whole of the results of these memoirs together,
in order to yield a comprehensive general dynamical explanation.

The author is again greatly indebted to Miss M. M. Gill for valuable assistance in
connexion with the numerical work.
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